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get_pcp_defaults Retrieve default PCP parameter settings for given matrix

Description

get_pcp_defaults() calculates "default" PCP parameter settings lambda, mu (used in root_pcp()),
and eta (used in rrmc()) for a given data matrix D.

The "default" values of lambda and mu offer theoretical guarantees of optimal estimation perfor-
mance. Candès et al. (2011) obtained the guarantee for lambda, while Zhang et al. (2021) obtained
the result for mu. It has not yet been proven whether or not eta enjoys similar properties.

In practice it is common to find different optimal parameter values after tuning these parameters
in a grid search. Therefore, it is recommended to use these defaults primarily to help define a
reasonable initial parameter search space to pass into grid_search_cv().

Usage

get_pcp_defaults(D)

Arguments

D The input data matrix.

Value

A list containing:

• lambda: The theoretically optimal lambda value used in root_pcp().

• mu: The theoretically optimal mu value used in root_pcp().

• eta: The default eta value used in rrmc().

https://proceedings.neurips.cc/paper/2021/hash/f65854da4622c1f1ad4ffeb361d7703c-Abstract.html
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The intuition behind PCP parameters

root_pcp()’s objective function is given by:

min
L,S

||L||∗ + λ||S||1 + µ||L+ S −D||F

• lambda controls the sparsity of root_pcp()’s output S matrix; larger values of lambda penal-
ize non-zero entries in S more stringently, driving the recovery of sparser S matrices. There-
fore, if you a priori expect few outlying events in your model, you might expect a grid search
to recover relatively larger lambda values, and vice-versa.

• mu adjusts root_pcp()’s sensitivity to noise; larger values of mu penalize errors between the
predicted model and the observed data (i.e. noise), more severely. Environmental data subject
to higher noise levels therefore require a root_pcp() model equipped with smaller mu values
(since higher noise means a greater discrepancy between the observed mixture and the true
underlying low-rank and sparse model). In virtually noise-free settings (e.g. simulations),
larger values of mu would be appropriate.

rrmc()’s objective function is given by:

min
L,S

Irank(L)≤r + η||S||0 + ||L+ S −D||2F

• eta controls the sparsity of rrmc()’s output S matrix, just as lambda does for root_pcp().
Because there are no other parameters scaling the noise term, eta can be thought of as a ratio
between root_pcp()’s lambda and mu: Larger values of eta will place a greater emphasis
on penalizing the non-zero entries in S over penalizing the errors between the predicted and
observed data (the dense noise Z).

The calculation of the "default" PCP parameters

• lambda is calculated as λ = 1/
√
max(n, p), where n and p are the dimensions of the input

matrix Dn×p Candès et al. (2011).

• mu is calculated as µ =
√

min(n,p)
2 , where n and p are as above [Zhang et al. (2021)].

• eta is simply η = λ
µ .

References

Candès, Emmanuel J., Xiaodong Li, Yi Ma, and John Wright. "Robust principal component analy-
sis?." Journal of the ACM (JACM) 58, no. 3 (2011): 1-37.

Zhang, Junhui, Jingkai Yan, and John Wright. "Square root principal component pursuit: tuning-
free noisy robust matrix recovery." Advances in Neural Information Processing Systems 34 (2021):
29464-29475. [available here]

See Also

grid_search_cv()

https://proceedings.neurips.cc/paper/2021/hash/f65854da4622c1f1ad4ffeb361d7703c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f65854da4622c1f1ad4ffeb361d7703c-Abstract.html
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Examples

# Examine the queens PM2.5 data
queens
# Get rid of the Date column
D <- as.matrix(queens[, 2:ncol(queens)])
# Get default PCP parameters
default_params <- get_pcp_defaults(D)
# Use default parameters to define parameter search space
scaling_factors <- sort(c(10^seq(-2, 4, 1), 2 * 10^seq(-2, 4, 1)))
etas_to_grid_search <- default_params$eta * scaling_factors
etas_to_grid_search

grid_search_cv Cross-validated grid search for PCP models

Description

grid_search_cv() conducts a Monte Carlo style cross-validated grid search of PCP parameters
for a given data matrix D, PCP function pcp_fn, and grid of parameter settings to search through
grid. The run time of the grid search can be sped up using bespoke parallelization settings. The
call to grid_search_cv() can be wrapped in a call to progressr::with_progress() for progress
bar updates. See the below sections for details.

Usage

grid_search_cv(
D,
pcp_fn,
grid,
...,
parallel_strategy = "sequential",
num_workers = 1,
perc_test = 0.05,
num_runs = 100,
return_all_tests = FALSE,
verbose = TRUE

)

Arguments

D The input data matrix (can contain NA values). Note that PCP will converge
much more quickly when D has been standardized in some way (e.g. scaling
columns by their standard deviations, or column-wise min-max normalization).

pcp_fn The PCP function to use when grid searching. Must be either rrmc or root_pcp
(passed without the soft brackets).



grid_search_cv 5

grid A data.frame of dimension j by k containing the j-many unique settings of
k-many parameters to try. NOTE: The columns of grid should be named
after the required parameters in the function header of pcp_fn. For exam-
ple, if pcp_fn = root_pcp and you want to search through lambda and mu, then
names(grid) must be set to c("lambda", "mu"). If instead you want to keep
e.g. lambda fixed and search through only mu, you can either have a grid with
only one column, mu, and pass lambda as a constant via ..., or you can have
names(grid) set to c("lambda", "mu") where lambda is constant. The same
logic applies for pcp_fn = rrmc and eta and r.

... Any parameters required by pcp_fn that should be kept constant throughout the
grid search, or those parameters that cannot be stored in grid (e.g. the LOD
parameter). A parameter should not be passed with ... if it is already a column
in grid, as that behavior is ambiguous.

parallel_strategy

(Optional) The parallelization strategy used when conducting the grid search (to
be passed on to the future::plan() function). Must be one of: "sequential",
"multisession", "multicore" or "cluster". By default, parallel_strategy
= "sequential", which runs the grid search in serial and the num_workers ar-
gument is ignored. The option parallel_strategy = "multisession" paral-
lelizes the search via sockets in separate R sessions. The option parallel_strategy
= "multicore" is not supported on Windows machines, nor in .Rmd files (must
be run in a .R script) but parallelizes the search much faster than "multisession"
since it runs separate forked R processes. The option parallel_strategy =
"cluster" parallelizes using separate R sessions running typically on one or
more machines. Support for other parallel strategies will be added in a future re-
lease of pcpr. It is recommended to use parallel_strategy = "multicore"
or "multisession" when possible.

num_workers (Optional) An integer specifying the number of workers to use when paralleliz-
ing the grid search, to be passed on to future::plan(). By default, num_workers
= 1. When possible, it is recommended to use num_workers = parallel::detectCores(logical
= F), which computes the number of physical CPUs available on the machine
(see parallel::detectCores()). num_workers is ignored when parallel_strategy
= "sequential", and must be > 1 otherwise.

perc_test (Optional) The fraction of entries of D that will be randomly corrupted as NA
missing values (the test set). Can be anthing in the range [0, 1). By default,
perc_test = 0.05. See Best practices section for more details.

num_runs (Optional) The number of times to test a given parameter setting. By default,
num_runs = 100. See Best practices section for more details.

return_all_tests

(Optional) A logical indicating if you would like the output from all the calls
made to pcp_fn over the course of the grid search to be returned to you in
list format. If set to FALSE, then only statistics on the parameters tested will
be returned. If set to TRUE then every L, and S matrix recovered during the
grid search will be returned in the lists L_mats and S_mats, every test set ma-
trix will be returned in the list test_mats, the original input matrix will be
returned as original_mat, and the parameters passed in to ... will be returned
in the constant_params list. By default, return_all_tests = FALSE, which
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is highly recommended. Setting return_all_tests = TRUE can consume a
massive amount of memory depending on the size of grid, the input matrix
D, and the value for num_runs.

verbose (Optional) A logical indicating if you would like verbose output displayed or
not. By default, verbose = TRUE. To obtain progress bar updates, the user must
wrap the grid_search_cv() call with a call to progressr::with_progress().
The progress bar does not depend on the value passed for verbose.

Value

A list containing:

• all_stats: A data.frame containing the statistics of every run comprising the grid search.
These statistics include the parameter settings for the run, along with the run_num (used as the
seed for the corruption step, step 1 in the grid search procedure), the relative error for the run
rel_err, the rank of the recovered L matrix L_rank, the sparsity of the recovered S matrix
S_sparsity, the number of iterations PCP took to reach convergence (for root_pcp()
only), and the error status run_error of the PCP run (NA if no error, otherwise a character
string).

• summary_stats: A data.frame containing a summary of the information in all_stats.
Summary made by column-wise averaging the results in all_stats.

• metadata: A character string containing the metadata associated with the grid search instance.

If return_all_tests = TRUE then the following are also returned as part of the list:

• L_mats: A list containing all the L matrices returned from PCP throughout the grid search.
Therefore, length(L_mats) == nrow(all_stats). Row i in all_stats corresponds to L_mats[[i]].

• S_mats: A list containing all the S matrices returned from PCP throughout the grid search.
Therefore, length(S_mats) == nrow(all_stats). Row i in all_stats corresponds to S_mats[[i]].

• test_mats: A list of length(num_runs) containing all the corrupted test mats (and their
masks) used throughout the grid search. Note: all_stats$run[i] corresponds to test_mats[[i]].

• original_mat: The original data matrix D.

• constant_params: A copy of the constant parameters that were originally passed to the grid
search (for record keeping).

The Monte Carlo style cross-validation procedure

Each hyperparameter setting is cross-validated by:

1. Randomly corrupting perc_test percent of the entries in D as missing (i.e. NA values), yield-
ing D_tilde. Done via sim_na().

2. Running the PCP function pcp_fn on D_tilde, yielding estimates L and S.

3. Recording the relative recovery error of L compared with the input data matrix D for only those
values that were imputed as missing during the corruption step (step 1 above). Mathemati-
cally, calculate: ||PΩc(D − L)||F /||PΩc(D)||F , where PΩc selects only those entries where
is.na(D_tilde) == TRUE.

4. Repeating steps 1-3 for a total of num_runs-many times, where each "run" has a unique ran-
dom seed from 1 to num_runs associated with it.
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5. Performance statistics can then be calculated for each "run", and then summarized across all
runs for average model performance statistics.

Best practices for perc_test and num_runs

Experimentally, this grid search procedure retrieves the best performing PCP parameter settings
when perc_test is relatively low, e.g. perc_test = 0.05, or 5%, and num_runs is relatively high,
e.g. num_runs = 100.

The larger perc_test is, the more the test set turns into a matrix completion problem, rather than
the desired matrix decomposition problem. To better resemble the actual problem PCP will be faced
with come inference time, perc_test should therefore be kept relatively low.

Choosing a reasonable value for num_runs is dependent on the need to keep perc_test relatively
low. Ideally, a large enough num_runs is used so that many (if not all) of the entries in D are likely
to eventually be tested. Note that since test set entries are chosen randomly for all runs 1 through
num_runs, in the pathologically worst case scenario, the same exact test set could be drawn each
time. In the best case scenario, a different test set is obtained each run, providing balanced coverage
of D. Viewed another way, the smaller num_runs is, the more the results are susceptible to overfitting
to the relatively few selected test sets.

Interpretaion of results

Once the grid search of has been conducted, the optimal hyperparameters can be chosen by exam-
ining the output statistics summary_stats. Below are a few suggestions for how to interpret the
summary_stats table:

• Generally speaking, the first thing a user will want to inspect is the rel_err statistic, capturing
the relative discrepancy between recovered test sets and their original, observed (yet possibly
noisy) values. Lower rel_err means the PCP model was better able to recover the held-out
test set. So, in general, the best parameter settings are those with the lowest rel_err.
Having said this, it is important to remember that this statistic should be taken with a grain of
salt: Because no ground truth L matrix exists, the rel_err measurement is forced to rely on
the comparison between the noisy observed data matrix D and the estimated low-rank model
L. So the rel_err metric is an "apples to oranges" relative error. For data that is a priori
expected to be subject to a high degree of noise, it may actually be better to discard parameter
settings with suspiciously low rel_errs (in which case the solution may be hallucinating an
inaccurate low-rank structure from the observed noise).

• For grid searches using root_pcp() as the PCP model, parameters that fail to converge can
be discarded. Generally, fewer root_pcp() iterations (num_iter) taken to reach conver-
gence portend a more reliable / stable solution. In rare cases, the user may need to increase
root_pcp()’s max_iter argument to reach convergence. rrmc() does not report convergence
metadata, as its optimization scheme runs for a fixed number of iterations.

• Parameter settings with unreasonable sparsity or rank measurements can also be discarded.
Here, "unreasonable" means these reported metrics flagrantly contradict prior assumptions,
knowledge, or work. For instance, most air pollution datasets contain a number of extreme
exposure events, so PCP solutions returning sparse S models with 100% sparsity have obvi-
ously been regularized too heavily. Solutions with lower sparsities should be preferred. Note
that reported sparsity and rank measurements are estimates heavily dependent on the thresh
set by the sparsity() & matrix_rank() functions. E.g. it could be that the actual average
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matrix rank is much higher or lower when a threshold that better takes into account the relative
scale of the singular values is used. Likewise for the sparsity estimations. Also, recall that
the given value for perc_test artifically sets a sparsity floor, since those missing entries in
the test set cannot be recovered in the S matrix. E.g. if perc_test = 0.05, then no parameter
setting will have an estimated sparsity lower than 5%.

See Also

sim_na(), sparsity(), matrix_rank(), get_pcp_defaults()

Examples

#### -------Simple simulated PCP problem-------####
# First we will simulate a simple dataset with the sim_data() function.
# The dataset will be a 100x10 matrix comprised of:
# 1. A rank-3 component as the ground truth L matrix;
# 2. A ground truth sparse component S w/outliers along the diagonal; and
# 3. A dense Gaussian noise component
data <- sim_data()
#### -------Tiny grid search-------####
# Here is a tiny grid search just to test the function quickly.
# In practice we would recommend a larger grid search.
# For examples of larger searches, see the vignettes.
gs <- grid_search_cv(

data$D,
rrmc,
data.frame("eta" = 0.35),
r = 3,
num_runs = 2

)
gs$summary_stats

hard_threshold Hard-thresholding operator

Description

hard_threshold() implements the hard-thresholding operator on a given matrix D, making D
sparser: elements of D whose absolute value are less than a given threshold thresh are set to 0,
i.e. D[|D| < thresh] = 0.

This is used in the non-convex PCP function rrmc() to provide a non-convex replacement for the
prox_l1() method used in the convex PCP function root_pcp(). It is used to iteratively model
the sparse S matrix with the help of an adaptive threshold (thresh changes over the course of
optimization).

Usage

hard_threshold(D, thresh)
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Arguments

D The input data matrix.

thresh The scalar-valued hard-threshold acting on D such that D[i, j] = 0 when abs(D[i,
j]) < thresh, and D[i, j] = D[i, j] otherwise.

Value

The hard-thresholded matrix.

Examples

set.seed(42)
D <- matrix(rnorm(25), 5, 5)
S <- hard_threshold(D, thresh = 1)
D
S

impute_matrix Impute missing values in given matrix

Description

impute_matrix() imputes the missing NA values in a given matrix using a given imputation_scheme.

Usage

impute_matrix(D, imputation_scheme)

Arguments

D The input data matrix.
imputation_scheme

The values to replace missing NA values in D with. Can be either:

• A scalar numeric, indicating all NA values should be imputed with the same
scalar numeric value;

• A vector of length ncol(D), signifying column-specific imputation, where
each entry in the imputation_scheme vector corresponds to the imputation
value for each column in D; or

• A matrix of dimension dim(D), indicating an observation-specific imputa-
tion scheme, where each entry in the imputation_scheme matrix corre-
sponds to the imputation value for each entry in D.

Value

The imputed matrix.
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See Also

sim_na(), sim_lod(), sim_data()

Examples

#### ------------Imputation with a scalar------------####
# simulate a small 5x5 mixture
D <- sim_data(5, 5)$D
# corrupt the mixture with 40% missing observations
D_tilde <- sim_na(D, 0.4)$D_tilde
D_tilde
# impute missing values with 0
impute_matrix(D_tilde, 0)
# impute missing values with -1
impute_matrix(D_tilde, -1)

#### ------------Imputation with a vector------------####
# impute missing values with the column-mean
impute_matrix(D_tilde, apply(D_tilde, 2, mean, na.rm = TRUE))
# impute missing values with the column-min
impute_matrix(D_tilde, apply(D_tilde, 2, min, na.rm = TRUE))

#### ------------Imputation with a matrix------------####
# impute missing values with random Gaussian noise
noise <- matrix(rnorm(prod(dim(D_tilde))), nrow(D_tilde), ncol(D_tilde))
impute_matrix(D_tilde, noise)

#### ------------Imputation with LOD/sqrt(2)------------####
D <- sim_data(5, 5)$D
lod_info <- sim_lod(D, q = 0.2)
D_tilde <- lod_info$D_tilde
D_tilde
lod <- lod_info$lod
impute_matrix(D_tilde, lod / sqrt(2))

matrix_rank Estimate rank of a given matrix

Description

matrix_rank() estimates the rank of a given data matrix D by counting the number of "practically
nonzero" singular values of D.

The rank of a matrix is the number of linearly independent columns or rows in the matrix, governing
the structure of the data. It can intuitively be thought of as the number of inherent latent patterns in
the data.

A singular value s is determined to be "practically nonzero" if s ≥ smax · thresh, i.e. if it is greater
than or equal to the maximum singular value in D scaled by a given threshold thresh.
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Usage

matrix_rank(D, thresh = NULL)

Arguments

D The input data matrix (cannot have NA values).

thresh (Optional) A double > 0, specifying the relative threshold by which "practically
zero" is determined, used to calculate the rank of D. By default, thresh = NULL,
in which case the threshold is set to max(dim(D)) * .Machine$double.eps.

Value

An integer estimating the rank of D.

See Also

sparsity()

Examples

data <- sim_data()
matrix_rank(data$D)
matrix_rank(data$L)

proj_rank_r Project matrix to rank r

Description

proj_rank_r() implements a best (i.e. closest) rank-r approximation of an input matrix.

This is computed via a simple truncated singular value decomposition (SVD), retaining the first
r leading singular values/vectors of D. This is equivalent to solving the following optimization
problem: min||X − D||F s.t.rank(X) <= r, where X is the approximated solution and D is the
input matrix.

proj_rank_r() is used to iteratively model the low-rank L matrix in the non-convex PCP function
rrmc(), providing a non-convex replacement for the prox_nuclear() method used in the convex
PCP function root_pcp().

Intuitively, proj_rank_r() can also be thought of as providing a PCA estimate of a rank-r matrix
L from observed data D.

Usage

proj_rank_r(D, r)
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Arguments

D The input data matrix (cannot have NA values).

r The rank that D should be projected/truncated to.

Value

The best rank-r approximation to D via a truncated SVD.

See Also

rrmc()

Examples

# Simulating a simple dataset D with the sim_data() function.
# The dataset will be a 10x5 matrix comprised of:
# 1. A rank-1 component as the ground truth L matrix; and
# 2. A dense Gaussian noise component corrupting L, making L full-rank
data <- sim_data(10, 5, 1, numeric(), 0.01)
# The observed matrix D is full-rank, while L is rank-1:
data.frame("D_rank" = matrix_rank(data$D), "L_rank" = matrix_rank(data$L))
before_proj_err <- norm(data$D - data$L, "F") / norm(data$L, "F")
# Projecting D onto the nearest rank-1 approximation, X, via proj_rank_r()
X <- proj_rank_r(data$D, r = 1)
after_proj_err <- norm(X - data$L, "F") / norm(data$L, "F")
proj_v_obs_err <- norm(X - data$D, "F") / norm(data$D, "F")
data.frame(

"Observed_error" = before_proj_err,
"Projected_error" = after_proj_err,
"Projected_vs_observed_error" = proj_v_obs_err

)

queens Daily chemical concentrations of 26 PM2.5 species from Queens, NYC
(2001-2021)

Description

A dataset containing the chemical concentrations (in µg/m^3) of 26 PM2.5 species measured ev-
ery three to six days from 04/04/2001 through 12/30/2021 in Queens, New York City. Data ob-
tained from the U.S. Environmental Protection Agency’s Air Quality System data mart (site ID:
36-081-0124).

Usage

queens
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Format

A tibble with 2443 rows and 27 variables:

• Date: The date the PM2.5 measurements were made
• ...: The remaining 26 variables are the 26 PM2.5 species (in µg/m^3): Al, NH4, As, Ba, Br,

Cd, Ca, Cl, Cr, Cu, EC, Fe, Pb, Mg, Mn, Ni, OC, K, Se, Si, Na, S, Ti, NO3, V, Zn

Source

https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=5f239fd3e72f424f98ef3d5def547eb5

References

US Environmental Protection Agency. Air Quality System Data Mart internet database available
via https://www.epa.gov/outdoor-air-quality-data. Accessed July 15, 2022.

Examples

queens

root_pcp Square root principal component pursuit (convex PCP)

Description

root_pcp() implements the convex PCP algorithm "Square root principal component pursuit" as
described in Zhang et al. (2021) , outfitted with environmental health (EH)-specific extensions as
described in Gibson et al. (2022).

Given an observed data matrix D, and regularization parameters lambda and mu, root_pcp() aims
to find the best low-rank and sparse estimates L and S. The L matrix encodes latent patterns that
govern the observed data. The S matrix captures any extreme events in the data unexplained by the
underlying patterns in L.

Being convex, root_pcp() determines the rank r, or number of latent patterns in the data, au-
tonomously during it’s optimization. As such, the user does not need to specify the desired rank r
of the output L matrix as in the non-convex PCP model rrmc().

Experimentally, the root_pcp() approach to PCP modeling has best been able to handle those
datasets that are governed by well-defined underlying patterns, characterized by quickly decaying
singular values. This is typical of imaging and video data, but uncommon for EH data. For observed
data with a complex low rank structure (slowly decaying singular values), like EH data, rrmc() may
offer a better model estimate.

Three EH-specific extensions are currently supported by root_pcp():

1. The model can handle missing values in the input data matrix D;
2. The model can also handle measurements that fall below the limit of detection (LOD), if

provided LOD information by the user; and
3. The model is also equipped with an optional non-negativity constraint on the low-rank L ma-

trix, ensuring that all output values in L are > 0.

https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=5f239fd3e72f424f98ef3d5def547eb5
https://www.epa.gov/outdoor-air-quality-data
https://proceedings.neurips.cc/paper/2021/hash/f65854da4622c1f1ad4ffeb361d7703c-Abstract.html
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Usage

root_pcp(
D,
lambda = NULL,
mu = NULL,
LOD = -Inf,
non_negative = TRUE,
max_iter = 10000,
verbose = FALSE

)

Arguments

D The input data matrix (can contain NA values). Note that PCP will converge
much more quickly when D has been standardized in some way (e.g. scaling
columns by their standard deviations, or column-wise min-max normalization).

lambda, mu (Optional) A pair of doubles each in the range [0, Inf) regularizing S and L.
lambda controls the sparsity of the output S matrix; larger values penalize non-
zero entries in S more stringently, driving the recovery of sparser S matrices.
mu adjusts the model’s sensitivity to noise; larger values will penalize errors
between the predicted model and the observed data more severely. It is highly
recommended the user tunes both of these parameters using grid_search_cv()
for each unique data matrix D. By default, both lambda and mu are NULL, in
which case the theoretically optimal values are used, calculated according to
get_pcp_defaults().

LOD (Optional) The limit of detection (LOD) data. Entries in D that satisfy D >= LOD
are understood to be above the LOD, otherwise those entries are treated as below
the LOD. LOD can be either:

• A double, implying a universal LOD common across all measurements in
D;

• A vector of length ncol(D), signifying a column-specific LOD, where each
entry in the LOD vector corresponds to the LOD for each column in D; or

• A matrix of dimension dim(D), indicating an observation-specific LOD,
where each entry in the LOD matrix corresponds to the LOD for each entry
in D.

By default, LOD = -Inf, indicating there are no known LODs for PCP to lever-
age.

non_negative (Optional) A logical indicating whether or not the non-negativity constraint
should be used to constrain the output L matrix to have all entries ≥ 0. By
default, non_negative = TRUE.

max_iter (Optional) An integer specifying the maximum number of iterations to allow
PCP before giving up on meeting PCP’s convergence criteria. By default, max_iter
= 10000, suitable for most problems.

verbose (Optional) A logical indicating whether or not to print information in real time
over the course of PCP’s optimization. By default, verbose = FALSE.
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Value

A list containing:

• L: The rank-r low-rank matrix encoding the r-many latent patterns governing the observed
input data matrix D. dim(L) will be the same as dim(D). To explicitly obtain the underlying
patterns, L can be used as the input to any matrix factorization technique of choice, e.g. PCA,
factor analysis, or non-negative matrix factorization.

• S: The sparse matrix containing the rare outlying or extreme observations in D that are not
explained by the underlying patterns in the corresponding L matrix. dim(S) will be the same
as dim(D). Most entries in S are 0, while non-zero entries identify the extreme outlying obser-
vations in D.

• num_iter: The number of iterations taken to reach convergence. If num_iter == max_iter
then root_pcp() did not converge.

• objective: A vector containing the values of root_pcp()’s objective function over the
course of optimization.

• converged: A boolean indicating whether the convergence criteria were met before max_iter
was reached.

The objective function

root_pcp() optimizes the following objective function:

min
L,S

||L||∗ + λ||S||1 + µ||L+ S −D||F

The first term is the nuclear norm of the L matrix, incentivizing L to be low-rank. The second
term is the ℓ1 norm of the S matrix, encouraging S to be sparse. The third term is the Frobenius
norm applied to the model’s noise, ensuring that the estimated low-rank and sparse models L and
S together have high fidelity to the observed data D. The objective is not smooth nor differentiable,
however it is convex and separable. As such, it is optimized using the Alternating Direction Method
of Multipliers (ADMM) algorithm Boyd et al. (2011), Gao et al. (2020).

The lambda and mu parameters

• lambda controls the sparsity of root_pcp()’s output S matrix; larger values of lambda penal-
ize non-zero entries in S more stringently, driving the recovery of sparser S matrices. There-
fore, if you a priori expect few outlying events in your model, you might expect a grid search
to recover relatively larger lambda values, and vice-versa.

• mu adjusts root_pcp()’s sensitivity to noise; larger values of mu penalize errors between the
predicted model and the observed data (i.e. noise), more severely. Environmental data subject
to higher noise levels therefore require a root_pcp() model equipped with smaller mu values
(since higher noise means a greater discrepancy between the observed mixture and the true
underlying low-rank and sparse model). In virtually noise-free settings (e.g. simulations),
larger values of mu would be appropriate.

The default values of lambda and mu offer theoretical guarantees of optimal estimation performance,
and stable recovery of L and S. By "stable", we mean root_pcp()’s reconstruction error is, in the
worst case, proportional to the magnitude of the noise corrupting the observed data (||Z||F ), often
outperforming this upper bound. Candès et al. (2011) obtained the guarantee for lambda, while
Zhang et al. (2021) obtained the result for mu.

https://proceedings.neurips.cc/paper/2021/hash/f65854da4622c1f1ad4ffeb361d7703c-Abstract.html


16 root_pcp

Environmental health specific extensions

We refer interested readers to Gibson et al. (2022) for the complete details regarding the EH-specific
extensions.

Missing value functionality: PCP assumes that the same data generating mechanisms govern both
the missing and the observed entries in D. Because PCP primarily seeks accurate estimation of
patterns rather than individual observations, this assumption is reasonable, but in some edge cases
may not always be justified. Missing values in D are therefore reconstructed in the recovered low-
rank L matrix according to the underlying patterns in L. There are three corollaries to keep in mind
regarding the quality of recovered missing observations:

1. Recovery of missing entries in D relies on accurate estimation of L;

2. The fewer observations there are in D, the harder it is to accurately reconstruct L (therefore
estimation of both unobserved and observed measurements in L degrades); and

3. Greater proportions of missingness in D artifically drive up the sparsity of the estimated S
matrix. This is because it is not possible to recover a sparse event in S when the corresponding
entry in D is unobserved. By definition, sparse events in S cannot be explained by the consistent
patterns in L. Practically, if 20% of the entries in D are missing, then at least 20% of the entries
in S will be 0.

Handling measurements below the limit of detection: When equipped with LOD information,
PCP treats any estimations of values known to be below the LOD as equally valid if their approxi-
mations fall between 0 and the LOD. Over the course of optimization, observations below the LOD
are pushed into this known range [0, LOD] using penalties from above and below: should a < LOD
estimate be < 0, it is stringently penalized, since measured observations cannot be negative. On the
other hand, if a < LOD estimate is > the LOD, it is also heavily penalized: less so than when < 0,
but more so than observations known to be above the LOD, because we have prior information that
these observations must be below LOD. Observations known to be above the LOD are penalized as
usual, using the Frobenius norm in the above objective function.

Gibson et al. (2022) demonstrates that in experimental settings with up to 50% of the data corrupted
below the LOD, PCP with the LOD extension boasts superior accuracy of recovered L models
compared to PCA coupled with LOD/

√
2 imputation. PCP even outperforms PCA in low-noise

scenarios with as much as 75% of the data corrupted below the LOD. The few situations in which
PCA bettered PCP were those pathological cases in which D was characterized by extreme noise
and huge proportions (i.e., 75%) of observations falling below the LOD.

The non-negativity constraint on L: To enhance interpretability of PCP-rendered solutions, there
is an optional non-negativity constraint that can be imposed on the L matrix to ensure all estimated
values within it are ≥ 0. This prevents researchers from having to deal with negative observation
values and questions surrounding their meaning and utility. Non-negative L models also allow for
seamless use of methods such as non-negative matrix factorization to extract non-negative patterns.
The non-negativity constraint is incorporated in the ADMM splitting technique via the introduction
of an additional optimization variable and corresponding constraint.

References

Zhang, Junhui, Jingkai Yan, and John Wright. "Square root principal component pursuit: tuning-
free noisy robust matrix recovery." Advances in Neural Information Processing Systems 34 (2021):
29464-29475. [available here]

https://proceedings.neurips.cc/paper/2021/hash/f65854da4622c1f1ad4ffeb361d7703c-Abstract.html
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Gibson, Elizabeth A., Junhui Zhang, Jingkai Yan, Lawrence Chillrud, Jaime Benavides, Yanelli
Nunez, Julie B. Herbstman, Jeff Goldsmith, John Wright, and Marianthi-Anna Kioumourtzoglou.
"Principal component pursuit for pattern identification in environmental mixtures." Environmental
Health Perspectives 130, no. 11 (2022): 117008.

Boyd, Stephen, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. "Distributed opti-
mization and statistical learning via the alternating direction method of multipliers." Foundations
and Trends in Machine learning 3, no. 1 (2011): 1-122.

Gao, Wenbo, Donald Goldfarb, and Frank E. Curtis. "ADMM for multiaffine constrained optimiza-
tion." Optimization Methods and Software 35, no. 2 (2020): 257-303.

Candès, Emmanuel J., Xiaodong Li, Yi Ma, and John Wright. "Robust principal component analy-
sis?." Journal of the ACM (JACM) 58, no. 3 (2011): 1-37.

See Also

rrmc()

Examples

#### -------Simple simulated PCP problem-------####
# First we will simulate a simple dataset with the sim_data() function.
# The dataset will be a 100x10 matrix comprised of:
# 1. A rank-2 component as the ground truth L matrix;
# 2. A ground truth sparse component S w/outliers along the diagonal; and
# 3. A dense Gaussian noise component
data <- sim_data(r = 2, sigma = 0.1)
# Best practice is to conduct a grid search with grid_search_cv() function,
# but we skip that here for brevity.
pcp_model <- root_pcp(data$D, lambda = 0.225, mu = 3.04)
data.frame(

"Estimated_L_rank" = matrix_rank(pcp_model$L, 5e-2),
"Observed_relative_error" = norm(data$L - data$D, "F") / norm(data$L, "F"),
"PCA_error" = norm(data$L - proj_rank_r(data$D, r = 2), "F") / norm(data$L, "F"),
"PCP_L_error" = norm(data$L - pcp_model$L, "F") / norm(data$L, "F"),
"PCP_S_error" = norm(data$S - pcp_model$S, "F") / norm(data$S, "F")

)

rrmc Rank-based robust matrix completion (non-convex PCP)

Description

rrmc() implements the non-convex PCP algorithm "Rank-based robust matrix completion" as de-
scribed in Cherapanamjeri et al. (2017) (see Algorithm 3), outfitted with environmental health
(EH)-specific extensions as described in Gibson et al. (2022).

Given an observed data matrix D, maximum rank to search up to r, and regularization parameter
eta, rrmc() seeks to find the best low-rank and sparse estimates L and S using an incremental rank-
based strategy. The L matrix encodes latent patterns that govern the observed data. The S matrix
captures any extreme events in the data unexplained by the underlying patterns in L.

https://proceedings.mlr.press/v70/cherapanamjeri17a.html
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rrmc()’s incremental rank-based strategy first estimates a rank-1 model (L(1), S(1)), before using
the rank-1 model as the initialization point to then construct a rank-2 model (L(2), S(2)), and so
on, until the desired rank-r model (L(r), S(r)) is recovered. All models from ranks 1 through r are
returned by rrmc() in this way.

Experimentally, the rrmc() approach to PCP has best been able to handle those datasets that are
governed by complex underlying patterns characterized by slowly decaying singular values, such
as EH data. For observed data with a well-defined low rank structure (rapidly decaying singular
values), root_pcp() may offer a better model estimate.

Two EH-specific extensions are currently supported by rrmc():

1. The model can handle missing values in the input data matrix D; and

2. The model can also handle measurements that fall below the limit of detection (LOD), if
provided LOD information by the user.

Support for a non-negativity constraint on rrmc()’s output will be added in a future release of pcpr.

Usage

rrmc(D, r, eta = NULL, LOD = -Inf)

Arguments

D The input data matrix (can contain NA values). Note that PCP will converge
much more quickly when D has been standardized in some way (e.g. scaling
columns by their standard deviations, or column-wise min-max normalization).

r An integer >= 1 specifying the maximum rank PCP model to return. All models
from rank 1 through r will be returned.

eta (Optional) A double in the range [0, Inf) defining the ratio between the
model’s sensitivity to sparse and dense noise. Larger values of eta will place a
greater emphasis on penalizing the non-zero entries in S over penalizing dense
noise Z, i.e. errors between the predicted and observed data Z = L + S - D. It is
recommended to tune eta using grid_search_cv() for each unique data matrix
D. By default, eta = NULL, in which case eta is retrieved using get_pcp_defaults().

LOD (Optional) The limit of detection (LOD) data. Entries in D that satisfy D >= LOD
are understood to be above the LOD, otherwise those entries are treated as below
the LOD. LOD can be either:

• A double, implying a universal LOD common across all measurements in
D;

• A vector of length ncol(D), signifying a column-specific LOD, where each
entry in the LOD vector corresponds to the LOD for each column in D; or

• A matrix of dimension dim(D), indicating an observation-specific LOD,
where each entry in the LOD matrix corresponds to the LOD for each entry
in D.

By default, LOD = -Inf, indicating there are no known LODs for PCP to lever-
age.
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Value

A list containing:

• L: The rank-r low-rank matrix encoding the r-many latent patterns governing the observed
input data matrix D. dim(L) will be the same as dim(D). To explicitly obtain the underlying
patterns, L can be used as the input to any matrix factorization technique of choice, e.g. PCA,
factor analysis, or non-negative matrix factorization.

• S: The sparse matrix containing the rare outlying or extreme observations in D that are not
explained by the underlying patterns in the corresponding L matrix. dim(S) will be the same
as dim(D). Most entries in S are 0, while non-zero entries identify the extreme outlying obser-
vations in D.

• L_list: A list of the r-many L matrices recovered over the course of rrmc()’s iterative op-
timization procedure. The first element in L_list corresponds to the rank-1 L matrix, the
second to the rank-2 L matrix, and so on.

• S_list: A list of the r-many corresponding S matrices recovered over the course of rrmc()’s
iterative optimization procedure. The first element in S_list corresponds to the rank-1 solu-
tion’s S matrix, the second to the rank-2 solution’s S matrix, and so on.

• objective: A vector containing the values of rrmc()’s objective function over the course of
optimization.

The objective function

rrmc() implicitly optimizes the following objective function:

min
L,S

Irank(L)≤r + η||S||0 + ||L+ S −D||2F

The first term is the indicator function checking that the L matrix is strictly rank r or less, im-
plemented using a rank r projection operator proj_rank_r(). The second term is the ℓ0 norm
applied to the S matrix to encourage sparsity, and is implemented with the help of an adaptive hard-
thresholding operator hard_threshold(). The third term is the squared Frobenius norm applied to
the model’s noise.

The eta parameter

The eta parameter scales the sparse penalty applied to rrmc()’s output sparse S matrix. Larger
values of eta penalize non-zero entries in S more stringently, driving the recovery of sparser S
matrices.

Because there are no other parameters scaling the other terms in rrmc()’s objective function, eta
can intuitively be thought of as the dial that balances the model’s sensitivity to extreme events
(placed in S) and its sensitivity to noise Z (captured by the last term in the objective, which measures
the discrepancy between the between the predicted model and the observed data). Larger values of
eta will place a greater emphasis on penalizing the non-zero entries in S over penalizing the errors
between the predicted and observed data Z = L + S - D.

Environmental health specific extensions

We refer interested readers to Gibson et al. (2022) for the complete details regarding the EH-specific
extensions.
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Missing value functionality: PCP assumes that the same data generating mechanisms govern both
the missing and the observed entries in D. Because PCP primarily seeks accurate estimation of
patterns rather than individual observations, this assumption is reasonable, but in some edge cases
may not always be justified. Missing values in D are therefore reconstructed in the recovered low-
rank L matrix according to the underlying patterns in L. There are three corollaries to keep in mind
regarding the quality of recovered missing observations:

1. Recovery of missing entries in D relies on accurate estimation of L;

2. The fewer observations there are in D, the harder it is to accurately reconstruct L (therefore
estimation of both unobserved and observed measurements in L degrades); and

3. Greater proportions of missingness in D artifically drive up the sparsity of the estimated S
matrix. This is because it is not possible to recover a sparse event in S when the corresponding
entry in D is unobserved. By definition, sparse events in S cannot be explained by the consistent
patterns in L. Practically, if 20% of the entries in D are missing, then at least 20% of the entries
in S will be 0.

Handling measurements below the limit of detection: When equipped with LOD information,
PCP treats any estimations of values known to be below the LOD as equally valid if their approxi-
mations fall between 0 and the LOD. Over the course of optimization, observations below the LOD
are pushed into this known range [0, LOD] using penalties from above and below: should a < LOD
estimate be < 0, it is stringently penalized, since measured observations cannot be negative. On the
other hand, if a < LOD estimate is > the LOD, it is also heavily penalized: less so than when < 0,
but more so than observations known to be above the LOD, because we have prior information that
these observations must be below LOD. Observations known to be above the LOD are penalized as
usual, using the Frobenius norm in the above objective function.

Gibson et al. (2022) demonstrates that in experimental settings with up to 50% of the data corrupted
below the LOD, PCP with the LOD extension boasts superior accuracy of recovered L models
compared to PCA coupled with LOD/

√
2 imputation. PCP even outperforms PCA in low-noise

scenarios with as much as 75% of the data corrupted below the LOD. The few situations in which
PCA bettered PCP were those pathological cases in which D was characterized by extreme noise
and huge proportions (i.e., 75%) of observations falling below the LOD.

References

Cherapanamjeri, Yeshwanth, Kartik Gupta, and Prateek Jain. "Nearly optimal robust matrix com-
pletion." International Conference on Machine Learning. PMLR, 2017. [available here]

Gibson, Elizabeth A., Junhui Zhang, Jingkai Yan, Lawrence Chillrud, Jaime Benavides, Yanelli
Nunez, Julie B. Herbstman, Jeff Goldsmith, John Wright, and Marianthi-Anna Kioumourtzoglou.
"Principal component pursuit for pattern identification in environmental mixtures." Environmental
Health Perspectives 130, no. 11 (2022): 117008.

See Also

root_pcp()

Examples

#### -------Simple simulated PCP problem-------####
# First we will simulate a simple dataset with the sim_data() function.

https://proceedings.mlr.press/v70/cherapanamjeri17a.html
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# The dataset will be a 100x10 matrix comprised of:
# 1. A rank-3 component as the ground truth L matrix;
# 2. A ground truth sparse component S w/outliers along the diagonal; and
# 3. A dense Gaussian noise component
data <- sim_data()
# Best practice is to conduct a grid search with grid_search_cv() function,
# but we skip that here for brevity.
pcp_model <- rrmc(data$D, r = 3, eta = 0.35)
data.frame(

"Observed_relative_error" = norm(data$L - data$D, "F") / norm(data$L, "F"),
"PCA_error" = norm(data$L - proj_rank_r(data$D, r = 3), "F") / norm(data$L, "F"),
"PCP_L_error" = norm(data$L - pcp_model$L, "F") / norm(data$L, "F"),
"PCP_S_error" = norm(data$S - pcp_model$S, "F") / norm(data$S, "F")

)

sim_data Simulate simple mixtures data

Description

sim_data() generates a simulated dataset D = L + S + Z for experimentation with Principal Compo-
nent Pursuit (PCP) algorithms.

Usage

sim_data(
n = 100,
p = 10,
r = 3,
sparse_nonzero_idxs = NULL,
sigma = 0.05,
seed = 42

)

Arguments

n, p (Optional) A pair of integers specifying the simulated dataset’s number of n
observations (rows) and p variables (columns). By default, n = 100, and p = 10.

r (Optional) An integer specifying the rank of the simulated dataset’s low-rank
component. Intuitively, the number of latent patterns governing the simulated
dataset. Must be that r <= min(n, p). By default, r = 3.

sparse_nonzero_idxs

(Optional) An integer vector with length(sparse_nonzero_idxs) <= n * p spec-
ifying the indices of the non-zero elements in the sparse component. By de-
fault, sparse_nonzero_idxs = NULL, in which case it is defined to be the vector
seq(1, n * p, n + 1) (placing sparse noise along the diagonal of the simulated
dataset).
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sigma (Optional) A double specifying the standard deviation of the dense (Gaussian)
noise component Z. By default, sigma = 0.05.

seed (Optional) An integer specifying the seed for random number generation. By
default, seed = 42.

Details

The data is simulated as follows:

L <- matrix(runif(n * r), n, r) %*% matrix(runif(r * p), r, p)

S <- matrix(0, n, p)

S[sparse_nonzero_idxs] <- 1

Z <- matrix(rnorm(n * p, sd = sigma), n, p)

D <- L + S + Z

Value

A list containing:

• D: The observed data matrix, where D = L + S + Z.

• L: The ground truth rank-r low-rank matrix.

• S: The ground truth sparse matrix.

• S: The ground truth dense (Gaussian) noise matrix.

See Also

sim_na(), sim_lod(), impute_matrix()

Examples

# rank 3 example
data <- sim_data()
matrix_rank(data$D)
matrix_rank(data$L)
# rank 7 example
data <- sim_data(n = 1000, p = 25, r = 7)
matrix_rank(data$D)
matrix_rank(data$L)
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sim_lod Simulate limit of detection data

Description

sim_lod() simulates putting the columns of a given matrix D under a limit of detection (LOD)
by calculating the given quantile q of each column and corrupting all values < the quantile to NA,
returning the newly corrupted matrix, the binary corruption mask, and a vector of column LODs.

Usage

sim_lod(D, q)

Arguments

D The input data matrix.

q A double in the range [0, 1] specifying the quantile to use in creating the
column-wise LODs. Passed as the probs argument to the quantile() function.

Value

A list containing:

• D_tilde: The original matrix D corrupted with < LOD NA values.

• tilde_mask: A binary matrix of dim(D) specifying the locations of corrupted entries (1) and
uncorrupted entries (0).

• lod: A vector with length(lod) == ncol(D) providing the simulated LOD values corre-
sponding to each column in the D_tilde.

See Also

sim_na(), impute_matrix(), sim_data()

Examples

D <- sim_data(5, 5, sigma = 0.8)$D
D
sim_lod(D, q = 0.2)
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sim_na Simulate random missingness in a given matrix

Description

sim_na() corrupts a given data matrix D such that a random perc percent of its entries are set to be
missing (set to NA). Used by grid_search_cv() in constructing test matrices for PCP models. Can
be used for experimentation with PCP models.

Note: only observed values can be corrupted as NA. This means if a matrix D already has e.g. 20%
of its values missing, then sim_na(D, perc = 0.2) would result in a matrix with 40% of its values
as missing.

Should e.g. perc = 0.6 be passed as input when D only has e.g. 10% of its entries left as observed,
then all remaining corruptable entries will be set to NA.

Usage

sim_na(D, perc, seed = 42)

Arguments

D The input data matrix.

perc A double in the range [0, 1] specifying the percentage of entries in D to corrupt
as missing (NA).

seed (Optional) An integer specifying the seed for the random selection of entries in
D to corrupt as missing (NA). By default, seed = 42.

Value

A list containing:

• D_tilde: The original matrix D with a random perc percent of its entries set to NA.

• tilde_mask: A binary matrix of dim(D) specifying the locations of corrupted entries (1) and
uncorrupted entries (0).

See Also

grid_search_cv(), sim_lod(), impute_matrix(), sim_data()

Examples

# Simple example corrupting 20% of a 5x5 matrix
D <- matrix(1:25, 5, 5)
corrupted_data <- sim_na(D, perc = 0.2)
corrupted_data$D_tilde
sum(is.na(corrupted_data$D_tilde)) / prod(dim(corrupted_data$D_tilde))
# Now corrupting another 20% ontop of the original 20%
double_corrupted <- sim_na(corrupted_data$D_tilde, perc = 0.2)



sing 25

double_corrupted$D_tilde
sum(is.na(double_corrupted$D_tilde)) / prod(dim(double_corrupted$D_tilde))
# Corrupting the remaining entries by passing in a large value for perc
all_corrupted <- sim_na(double_corrupted$D_tilde, perc = 1)
all_corrupted$D_tilde

sing Compute singular values of given matrix

Description

sing() calculates the singular values of a given data matrix D. This is done with a call to svd(), and
is included in pcpr to enable the quick characterization of a data matrix’s raw low-rank structure,
to help decide whether rrmc() or root_pcp() is the more appropriate PCP algorithm to employ in
conjunction with D.

Experimentally, the rrmc() approach to PCP has best been able to handle those datasets that are
governed by complex underlying patterns characterized by slowly decaying singular values, such
as EH data. For observed data with a well-defined low rank structure (rapidly decaying singular
values), root_pcp() may offer a better model estimate.

Usage

sing(D)

Arguments

D The input data matrix (cannot have NA values).

Value

A numeric vector containing the singular values of D.

References

"Singular value decomposition" Wikipedia article.

See Also

matrix_rank()

Examples

data <- sim_data()
sing(data$D)

https://en.wikipedia.org/wiki/Singular_value_decomposition
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sparsity Estimate sparsity of given matrix

Description

sparsity() estimates the percentage of entries in a given data matrix D whose values are "prac-
tically zero". If the absolute value of an entry is below a given threshold parameter thresh, then
that value is determined to be "practically zero", increasing the estimated sparsity of D. Note that NA
values are imputed as 0 before the sparsity calculation is made.

Usage

sparsity(D, thresh = 1e-04)

Arguments

D The input data matrix.

thresh (Optional) A numeric threshold >= 0 used to determine if an entry in D is "prac-
tically zero". If the absolute value of an entry is below thresh, then it is judged
to be "practically zero". By default, thresh = 1e-04.

Value

The sparsity of D, measured as the percentage of entries in D that are "practically zero".

See Also

matrix_rank()

Examples

sparsity(matrix(rep(c(1, 0), 8), 4, 4))
sparsity(matrix(0:8, 3, 3))
sparsity(matrix(0, 3, 3))
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